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The foundations of the theory of stochastically heterogeneous solids

were laid a long time ago by Voigt [1], who developed a method for
determining the macroscopic parameters of polycrystalline materials
by averaging the appropriate crystallite parameters with respect to
orientations. Lifshits and Rozentzveig [2] showed that it was necessary
to consider the correlation properties of the field in compurtations of
macroscopic parameters. They calculated the first corrections for the
averaged elastic constants of polycrystallites for the case of cubic and
hexagonal crystallites. Assuming a low degree of heterogeneity, these
authors used an approximation which corresponds to the Born approxi-
mation in the theory of scattering [3]. This method and its modifi-
cations were subsequently used by several authors for the computation
of macroscopic parameters of polycrystallites [4-6] and of other
microheterogeneous materials [8].

Moreover, the assumption of a low degree of heterogeneity of the
properties is very restrictive. It precludes use of the method in the
case of macroscopically isotropic polycrystallites formed from essen-
tially anisotropic ecrystallite stochastically glass reinforced plastics, and
similar microheterogeneous materials. This rises the problem of
developing procedures that could be applied in casesof a high degree
of heterogeneity. This problem presents serious analytical difficulties,
however. It is sufficient to point out that even computation of the
second approximation (i.e., the one following the Born approximation)
has not yet been completed. Analogous problems in the classical and
quantum theories of scattering are also, as a rule, considered only in
the Born approximation. More complicated methods (e. g. , Feyman's
method) make possible only partial summation of infinite sequences
in which the result is obtained. A method analogous to that of a self-
consistent field in quantum mechanics [9, 10] is promising; however,
this method is approximate and the magnitude of its error has not yet
been estimated.

The possibility of accurate determination of mascroscopic parameters
for certain classes of microheterogeneous media was demostrated
in [11], in which a detailed analysis was presented of parameters
forming a second order tensor and characterizing the distribution

in the medium of a certain scalar value obeying an equation similar
to the steady-state heat-conduction equation. Accurate formulas for
macroscopic coefficients of thermal conductivity (diffusion) were
derived for the case of a strongly anisotropic medium and for that of-
a medium with 2 high degree of transverse isotropy. We made a
comparison with various approximate methods and evaluated their
degree of error. This article describes an accurate method of com-
puting macroscopic elastic constants for polycrystalline media with a
high degree of anisotropy; for the case of polycrystals with a cubic
structure [12] the error margin and range of application of approximate
methods are estimated.

§1. Consider a heterogeneous elastic medium in a
state of equilibrium in the absence of volume forces.
The displacement vector uj{r), where r = (Xy, Xy, and
X3), satisfies equations

a . du,

Fr (}"jklm ax:ﬂ) =0
(here and henceforth a convention about summation in
‘respect to "dummy" subscripts is used). The coef-
ficients Ay 7y, define at each point of the field a
certain fourth-order tensor, i.e., a tensor of elastic
constants. If it is assumed that the solid has a random
microstructure, the coefficients AjkIm(r) form a
random tensor field. The dimensions of the solid are

(1.1)

assumed to be large enough ( in comparison with the
scales of heterogeneity and correlation) to rate as
infinite. At the same time the field Ay jy (1) is a8~
sumed to be homogeneous and ergodic. Let us represent

_the field Ajk pm(r) in the form

Mktm = Ajiim +.}\fj:lm {1.2)

where Ajklm = Q‘jk /m  denotes the mathematical
expectation of the tensor; { the angular brackets de-
note an operation of averaging in respect to a set of
parameters which in this case coincides with the
operation of averaging in respect to space). In [2. 5]
the fluctuation components Mjk Im Was introduced only
with a small parameter. In [6, 8], where a correlation
method was used, only pair interactions were taken
into account. In the final analysis, this is equivalent
to assuming a small magnitude of fluctuation compo-
nents. No such limitation is introduced in our work,

Let us formulate supplementary stochastic condi-
tions corresponding to Eq. (1.1). Let the solid be in
a macroscopically homogeneous stress—strain state.
We can stipulate that either the mathematical expec-
-tations of the stresses or the mathematical expecta-
tions of the strains must be equal to prescribed
values. Let us choose the latter method for setting
the supplementary conditions. For certain reasons
it is preferable to define the mathematical expecta-
tions pjk of the displacement gradient

Ouildxyy = pjy .

"The problem is to find the probability charac-
teristics of the field uj(r) which satisfies Eq. (1.1) and
conditions (1. 3), and to compute the tensor of elastic
constants Xﬁk Im for an equivalent quasihomogeneous
medium. This tensor can be determined from the con-
dition of equality of the mathematical expectations of
the stresses in a microheterogeneous medium and
from the corresponding stresses in the equivalent
medium

it 001/0%1) = Mt Dirn .
(1.4)
Let us introduce the Green's tensor ij (r,r;) for a
homogeneous medium with the elasticity constants

A'jkIm as the solution of a tensor equation
Aiwtin Gy, (T, r1)/00y0% g = — 8,0 (r —r1y) . (1.5)

With the aid of this tensor it is easy to write a
tensor integral equation equivalent to {1.1) and (1.3):

du, (r) ¢ 626-1 (5)- ” Bun{r +p)
aey T\ TEE, Mo (¥ p) “ﬁéi—,’,_dp =P,

g = (& &, 3, dp = d,dE,dE, (1.6)
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The solution of Eq. (1.6) is obtained by iteration:

du; (r) ad s %G, (1)
J — 7. PRI
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%G (o)
Ty N ”
“e -TBN—BE;;V_ }‘"n'élﬂzﬁa (r + PI)

Mg (£ 4+ 1+ o+ pw) dpyndpy. (1.7

With formula (1. 7) we formulate expressions for
the mathematical expectations of the stregses:

o 2
/ duy ¢ Gy, (1)
\}" klm@‘c \ A’Jllmplm_l"pstNngu- 3—02513—58,_'..
Py ()

T e ot (0) Migans, (P1) -

o Agapet (P14 - - pn)>des . - den (1.8)

Hence, in accordance with (1. 4), we find the tensor
of macroscopic elasticity constants

o -
. .
Mjtim = Mjpim -+ 2 \

S 5C (1)
N=1"

_—62316&51 cee
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- W jrags, (0) Aygiass, (P1) -

< eigiygim (P + ..+ px)> dpy. oy - (1.9)
Subsequently (1.9) will be written as:
Mt = Mt + Mjiim » (1.10)

whete A% is a solution of a tensor integral equation

]klm

Mitm (r) = (1.11)

N
= hjras (r)Sngs

In fact, solving Eq. (1.11) by the iteration method
and using the operation of mathematical expectation,
we obtain a series which appears in the right-hand
side of (1.9).

§2. If in the right-hand side of (1.9) only one term
(N =1) is retained, we obtain a formula for the Born
approximation [2]. The problem is to compute the
general term of series (1.9) and to perform factual
summation. In the general case this problem is ap-
prently insoluble. Let us therefore narrow the class
of random fields and consider only the highly isotropic
fields determined in [1]. Arandom field of constants
Ajk 7mfT) will be termed highly 1sotroplc if the corre-
lation functions of the tensor )‘Jk 1m{T) which corre-
sponds to this field, form an isotropic field. There
are grounds to expecf that a medium with a high degree
of isotropic of elastic properties is a satisfactory
model for describing elastic strains in real isotropic
polycrystallites.

In the case of an isotropic field

[Avsim (¢ -+ 8) = Mgt (v -+ )] dp.

Mt = hodixdim -+ Bo (810km + imBir) -

where A and u,; are the appropriate Lamé coefficients;
The Green's tensor Gjk(r,ry) is a function of the

(2.1)
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modulus of the distance between the points p = |r—r, |;
in addition
Gie (p) L (S 5 9 2.9
w =\ T8 az,-aak>’ (2.2)
_ _}__ Ro+po 1
T T ot = (2.3)

Here v is the Poisson ratio corresponding to the
tensor A'jk ym.

In the case of a strongly isotropic polycrystals
the correlation tensor for A"jk ym also depend only
on the moduli of the distances between points. In
particular,

gy (8) - P =

(2.4)

YN 15N—1°‘N5N (r) A'yNssz (r+
= (pjkaxﬂz---‘{NSNlm (p) .

The tensor MI:Z has an analogous property. To
facilitate subsequent calculations we introduce the
notation

it (1) o Mgy sy sy (F) Mooyt (¥ + )Y =

= Pk, vy yim (). (2.5)

With (1. 10) and Eq. (1.11) we find macroscopic
elastic constants. Averaging Eq. (1.11) and taking in-
to account notation (2. 4) and (2.5), we obtain an equa-
tion for the correlation correction of the averaged
tensor A;

ik Im:
<}“;;lm> =
¢ 06, (@) _
= 3—5?355— [Piasvoim (0) + Vinapwoim (0)1dp. (2. 6)

We substitute (2. 2) into (2. 6). Noting that

PG, (o) t
“HEan, T B [(1— 2g) 8a+Bas — 28430151 6 (p) +
+ i e
— -g—g [-— —:7 (Bapdys + Saydas +
+ Basder) 1+ (Baabils + darals + Sualel +

+ OuBals + Sankal, + dolale) — - LEEE ),
and integrating by parts, we obtain
Mitmd =
=— 3‘:;(; {(1 — 28) [Pinapapim (0) + Pirasasim (0)] —

—& [‘ijauBBlm (O) -+ ﬂ’jkmﬁﬁlm (0)]} +
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1
—v (Bazdys + Ouybps 4 Basdey) +



+ Bustay + S.atale) — 1 Lalsis || pPdp sin B dede.

Direct calculations show that the triple integral
vanishes.
Hence

iiimy = — Ya po” {(1 — 28) [@ikagazin (0) +

+ Pixagagim (0)] — & [Pikaaspim (0) + Binaussrm (V)13 2.7)

On the right-hand side of (2. 7) there appears a
mixed correlation tensor of type (2.5). To determine
this tensor we again use Eq. (1.11). Repeating the
calculations described above, we obtain the final
formula

*
}"jklm =

= hoBpBum + o (8B + 85mdir) + E I,
N=1
in which the general term of the series Ijklm is ex-
pressed as follows:

(2.8)

()
Ijklm =

== (1/3}"’51)1\7 <}"jk¢15xcdanYxEt"'YlG;U-sz C%Bz‘fﬁ: .. ;“YnﬁNlm>' (2' 9)

Here { o gys denotes an isotropic tensor:

CaBYS = (1 _ Zg) 60&\(568 - géaﬁays ‘ (2.10)

§3. Let us apply formulas (2.8) and (2.9) to a
strongly isotropic polycrystal. Its local elasticity con-
stants are given by a formula

Ajittm = CiaCrsCixCmslhapys * (3.1)
where pjk m is the tensor of elasticity constants of a
crystallite, referred to the crystallographic axes, and
Cj denotes the conversion matrix for changing over
from the crystallographic axes to a laboratory system of
coordinates. The components Ajk jm lose discontinuities
atgrainboundaries. Asaresult, elasticity constants,
displacements, stresses, etc. inEg. (1.1) and subsequent
quent formulas must be treated as generalized functions.
However, thefinal formulas (2.8) and (2. 9) express the
macroscopic elastic constants through single-point
correlation tensors and do not contain operations over
generalized functions.

We introduce the notation #"jk Im = Mk im~7'

jkilm,
Then, by analogy witn (3. 1),

Mikim = €jaCraCiyCmsbadvs *

(3.2)

We substitute formula (3. 2) into the right-hand side of
(2. 9). Noting that

s BiGersprvsdih ioas Carsanss, - - - AYNSNlm> =
= <ch1ckVzcﬁﬂacﬁ‘lhc1151‘{151671"5651\’060!2"1 vt

o Covgye g Py M vaes VAN s VaN e

cil1V:C{31V4CﬂxﬁxYx51cY1V5051Va = CVB‘MVSVG !

we transform formula (2. 9) to

N
I;klZn -
= (— 1/3”’0‘1)N <cjvlchvzclv4N+3cmv4N+4> p’vluzvav‘g\’m‘h"s"- e
. (3.3)
o By VAN 2 Va3 V4N +4
We calculate fourth-order moments from elements

of the conversion matrix ¢j g. In the case of equally
probable crystallite orientations we have

{CaaCaplarlys) = Y15 (60!13678 -+ 54\'6;8 -+ 6’1566‘() s

<caacaﬁcbvcb5> = 2/15 60&{3678 — 1/’30 (éaYéBa '+' 6015&{3‘{)

(here a #b; no summation is done in respect to the
subscripts a and b).Formula (2. 8) for macroscopic
elastic constants is reduced to the form

}‘fj;.'lm = A‘*éjkélm + Py (6jlakm + 5jm6h:l)’

where Ax and uy are microscopic Lame coefficients;

[on]
1 1 \N
A =ho + 35 N§=1 (—- 3‘@;) [40008v 50 aves

- (6"1"4N+35"2"4N+4 +

"IL 6v,v4N+4av:v4N+3)] uv.v;v,v.gv,uvsva e

o By vane vanesvan (3.4)
1 - 1 \N
“‘* = Wy + W Ngl ('—_ 3”0 ) ["— 25v1‘126v4N+3v4N+4 +

+3 (6VXV4N+36”=“4N74 +
+ 6'1;V4N+46'12V4N+3)] p‘vww,v,;v{v‘vsvg .-

o Lx‘t"41N+1"4N-r-2“41\'+3"4I\7+4'
Formulas (3. 4) can be rewritten in a more compact
form

Ay = Mo — Y15 (2%aaps — Yapaph

P = Mo~ Y30 (3N apas — Yzape)-
(3.5)
Here X = Xjk m is 2 fourth-order tensorassociated
with the tensor u" = “"jklm by the formula

S AN e,
=2 (’“—3‘> ANy
N=1 (3.6)
In ths case A is a linear operator over fourth-order
tensors which is defined as follows: a = Ab, if

Bipim = tho" Pj;aﬁgaﬁvsbﬁ""‘ (3. 7)

It is easy to see that there is a solution of an

operator equation in the right-hand side of (3. 6):

Xk e Ax =5 Ap” (3.8)

Equation (3. 8) represents a system of linear alge-

braic equations relative to the elements of the tensor
X = X jk Im- The number of equations forming this
systefn depends on the crystallographic class of a
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Elastic constants of crystallites

Shear modulus of a polycrystal

€11 ' Cs2

Cse

)y

3) ] 5

Ag 12.40 9.34
Al 10.82 6.13
Au 18.60 15.70
Cu 16.84 12.14
Pb 4.66 3.92

e Lol N
gr.nl\:ooc':

™o =

3.02 3.38 3.07 2.55
2.63 2.64 2.63 2.62
2.81 3.10 2.84 2.41
4£.83 5.47 4.91 4.00
0.87 1.01 0.89 0.67

(1) exact solution, (2) Voigt averaging (3) Born approximation, and (4) Reiss averaging,

given crystallite. This number is equal to three in the
case of a cubic structure, to six inthe case of ahexagonal
structure, etc. Formulas (3.5) and (3. 8) give an
exact solution of the problem. We obtain approximate
solution corresponding to the Born approximation by
retaining in (3. 6) the first term of the series or, and
this the same, by replacing Eq. (3.8) with an approxi-
mation relation x = 1/3 Au". It will be seen that the
final exact formulas are not very much more complex
than the approximate formulas.

§4. As a most simple example let us consider a polycrystal with a
cubic structure. Changing over, as is usual, to matrix notation, we
reduce subscripts: 11— 1, 22> 2,33 = 3,12 = 4, 23 — 5, and
and 31 —> 6. The matrix of elastic constants for the crystallite contains
three different elements which are not equal to zero:

My Myw My 0 0 O
My My O 0 0
My 0 0 O
= Mw 0 0
My O
My, (4.1)

Lame coefficients averaged by the Voigt method are given by
ho =1y (My + &My — 2Mu),

Mo = Y5 (My — Mys -+ 3My).

(4.2)
Formulas (3. 5) become
b= 2o — Y5 (s T 412 — 2ad),
Py = o — s (Y11 — Y1o T 3ag)- (4.3)

The solution of Egs. (3.8) for the case of matric (4.1) of elastic
constants will be

S i
T l—=2y

3x0Y
K12 = — 1437

By
Y= 1“+‘"3Y' s

pous

Ao =Yg (My — My, — 2M,,), v = g xopot (1 — 2g), (4.4)

where g is determined from (2.3). The Born approximation formula,
first derived in [2], has the same form (4.3); however, X11= 6Xo ¥
Xz = 3XaY and Xu = 2Xg V-

To compare the results yielded by different methods, the values
of elastic constants (4.2) from [2] are cited in the first three columns
of a table; the next columns shows values of the macroscopic shear
modulus calculated from exact formulas (4.e) and (4. 4) from the Voigt
method, from the Born approximation formulas, and from the Reiss
method which yields a lower limit for the elasticity constants. To
express the elasticity constants in newtons /m? the values cited in the

“table should be multiplied by 10, In the example considered the de-
gree of crystallite anisotropy is not excessive; consequently, the Born

approximation gives quite accurate results. In the case of a cubic
structure the macroscopic volume modulus coincides exactly with
vlaues averaged by the Voigt or Reiss methods as a result, another
Lame” elastic constant y = K - (2/8)p is less affected by the method
of calculation than the shear modulus.
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